Молекулярная энзимология и лекарственные мишени

  • Индекс Хирша журнала: 5
  • Оценка цитируемости журнала: 0.57
  • Импакт-фактор журнала: 0.58
Индексировано в
  • Китайская национальная инфраструктура знаний (CNKI)
  • Паблоны
  • Google Scholar
  • Секретные лаборатории поисковых систем
Поделиться этой страницей

Абстрактный

A Knowledge from a Molecular Docking Study on the Mycobacterium Tb Arabinosyltransferase C Enzyme as a Possible Therapeutic Target

Sachita Varma

One of the main obstacles to treating and curing tuberculosis is the fact that Mycobacterium tuberculosis is multi-drug resistant. Numerous anti-tubercular medications lack effectiveness as a result of M. tab’s established drug resistance mechanism. Therefore, research has been done globally to create potent anti-TB medications to enhance the treatment of these strains. Due to a lack of a structure-based approach, traditional drug development methods have been shown to be ineffective in the development of broad-spectrum drugs. In this context, numerous researches have been carried out and a number of drug target sites that affect drug-resistant Mtb strains have been found. The goal of this study was to determine how the two current medicines and five modified compounds produced from ethambutol interacted with the protein Arabinosyltransferase C. With Auto Dock, a molecular docking study can determine affinities and modes of binding. Emb1 and Emb3, which have different binding affinities, can be thought of as potential inhibitors of Arabinosyltransferase C in Mycobacterium TB, which is in charge of cell wall formation, according to analysis of a comparison study of the available medication. The information presented may be further tested experimentally for use in the development of new drugs to fight tuberculosis and further the study of effective antimyco bacterial techniques.

Keywords

Pharmaceutical chemistry; Binding affinity; Multi-drug resistant; Molecular docking; Anti-TB drugs; Tuberculosis

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию