Международный журнал разработки и исследования лекарств

  • ISSN: 0975-9344
  • Индекс Хирша журнала: 44
  • Оценка цитируемости журнала: 59.93
  • Импакт-фактор журнала: 48.80
Индексировано в
  • Журнал GenamicsSeek
  • Китайская национальная инфраструктура знаний (CNKI)
  • CiteFactor
  • Шимаго
  • Справочник индексации исследовательских журналов (DRJI)
  • OCLC- WorldCat
  • Паблоны
  • МИАР
  • Комиссия по университетским грантам
  • Евро Паб
  • Google Scholar
  • ШЕРПА РОМЕО
  • Секретные лаборатории поисковых систем
  • ResearchGate
Поделиться этой страницей

Абстрактный

Extraction of Drug-Drug Interactions Using Convolutional Neural Networks

Puneet Souda*

Drug-drug interaction (DDI) extraction has long been a popular relation extraction task in natural language processing (NLP). Modern support vector machines (SVM) with a high number of manually set features are the foundation of most DDI extraction methods. Convolutional neural networks (CNN), a reliable machine learning technique that nearly never requires manually generated features, have recently shown significant promise for a variety of NLP tasks. CNN should be used for DDI extraction, which has never been looked at. A CNN-based technique for DDI extraction was put forth. CNN is a good option for DDI extraction, as shown by experiments done on the 2013 DDI Extraction challenge corpus. The CNN-based DDI extraction approach outperforms the currently highest performing method by 69.75%, achieving a score of 69.75%.

Keywords

Drug-drug interaction (DDI); Convolutional neural networks (CNN); Support vector machines (SVM); Extraction

Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию